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ON THE STABILITY OF THE VERTICAL ROTATION OF A SOLID SUSPENDED ON A ROD* 

V.N. RUBAh'OVSKII 

The problem of the motion of a dynamically symmetric solid suspended from 
a fixed point by a weightless rod and two ball and socket joints one of 
which is fixed at the fixed point 0' , and the other is on the body axis 
of symmetry at the point 0 is considered. The question of the stability 
of the uniform body rotation when points 0' and 0, and the body centre of 
inertia C lie on the same vertical, and at the same time point 0 may be 
either above or below point 0', and point C either above or below point 0, 
is discussed. An analysis of the necessary and sufficient conditions for 
stability is given. The set of all the system's parameters is reduced to 
three independent dimensionless parameters L,R and 6, and in the plane 
(L,Q), for fixed values of b, the regions for which the unperturbed rotation 
is steady, or steady to a first approximation, or non-steady are indicated. 
The regions for which the body rotation is steady to a first approximation 
when the point 0 is situated higher than the point 0', and the point C 
lies higher or lower than the point 0 are determined. 

The sufficient conditions for the vertical rotation of a dynamically 
symmetric body suspended on a filament were obtained in /l/ and investigated 
for the cases where in non-perturbed motion the point C is below point 0, 
when points C and 0 coincide, and when the length of the filament is zero 
(Lagrange gyroscope). In /2/ an analysis is given of the sufficient 
conditions for stability obtained in /l/, and also the necessary conditions 
for the cases where in a non-perturbed motion point C is located above 
point 0. 

1. Consider, in a uniform field of gravity, the motion of a dynamically symmetric solid 
suspended on a thin straight weightless rod and two ball and socket joints, one of them being 
the fixed point 0', and the other located on the axis of symmetry of the body at point 0. 

We adopt the coordinate system Or,r*r, whose axes are invariably linked with the body 
and directed along its principal axes of inertia for the point 0. Let us introduce the 
following notation: m, JC is the mass and the tensor of inertia of the body for its centre 
of mass C, with the diagonal elements J1 = Jz,Ja; Q), Kc = Jc.0, are the angular velocity and 
the momentum of thebody, computed for point C, a is the radius vector of point C relatively 
to point 0, v is the velocity of point 0. y is the unit vector of the upward vertical, 1 
is the length of the rod,e is the unit vector directed along the rod to point 0', 8 is the 
acceleration due to gravity, and N is the reaction of the rod. We shall express all vectors 
by their projections 01, Kc, = J,oi, UY, vi, ei, ai on the z1 axis (i = I, 2,3,) with a, = a, - 0, 
a, =i a. 

l Prikl.Matem.Mekhan.,49,6,916-922,1985 
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The equation of motion in the coordinate system OtltyZ8 Can be expressed in the form 

m kildt (v + Q) X a) -I- o X (v + o X a)] = -mgy + Ne (1.1) 

dKc/di + u) x KC = Ne x a 

dyldt + o x ‘y = 0, 1 (deldt + o x e) = -v 
The meaning of Eqs.cl.1) is obvious. They admit of the following first ingegrals 

and have the partial solutions 

v, = o.Jc.o + m (v + o X a)* - hg (le - a).y = const 

v, = [Jc.o + m (a - &) X (v $ o X a)lvy = const 

V,=o,=const, V,=+=l, V,=e*=l, V(=v.e=O 

Vi = 01 = yf = I?I (i = 1, Z), Us = 0, 03= O> 0, ya= I, (1.2) 
e, = f i (N = f mg) 

which describe the uniform rotations of the body for which the points O', 0 and c lie on the 
same vertical, where, for thefirstsolution, (es = 1, N = mg) the point 0 is situated below 
point 0', and for the second (es = -1,N = -mg) above this point. The solutions (1.2) can 
be regarded as one solution with e, = l,if for the second solution we assume 1~0. 

2. We retain in the perturbed motion the above notation of the variables. Then Eqs.(l.l), 
linearized in the vicinity of solution (1.2), take the form 

le," + Ziole,' + (g - 021)e* - i (I - a)~*’ - 0 (1 - a) O* - (2.1) 
gl’r = 0 

JIG’ -+ io (J1 - J3) o* -b imgae, = 0, y+’ + ioy, - 

to, = 0 

e, = e, - ie,, co* = q 7 io,. Y* = y1 t iv, 

where e3 = 1, yS = 0, vs=l, ,Y = mg sign 1 to a first approximation. Finding the solutions of 
Eqs.(2.l)in the form 

(OS, y*, e,) = (o*', yIo, e,‘) erp Ii(h - 0) tl 

we obtain the following characteristic equations for determining the constant i; : 

g& (2.) - 1,21A., (7.) = 0. A0 = -J1*i.2 + J,ol. - mga (2.2) 
A, = -J,i? - J,oi. - mga. J1* = J, -I- ma? 

Thus, for the motion (1.2) to be steady with respect to the variables Oil yi, e,(i = 1.2,s) 
it is necessary that all four roots of Eq.(2.2) be real. 

3. We obtain the sufficient conditions for stability of the solution (1.2) from the 
Routh theory as the conditions for the following group of integrals to be positive definite 
(i. is a parameter): 

V = I’, - 2i.t', - 2J, (O - k) V, + [ J,oi. -I mg (I - a) II', + mgl V5 

on a linear manifold determined by the equations 61'1 = 0 (i = 2,...,6), i.e. for 60, = 6y, = 
be, = vJ = 0. Introducing the new variables Rj, aj(j = 1,2): 01 = Rj + i.yj, e, = y, + aj instead 
of o, and e, we represent V as 

V = JI* (Q1* + Qs2) + A0 (h) (y? + y?) + mgl (aI* T a?) -c 

m (vl* -i- v.2’) - 2 mal Z, I(& i hy,) a1 + (Q, + J.y,)a,l t 

2mli. (a1v2 _t apvl) - 2a (R1vl $ S&v,) -+ . . . 
where terms of the second order of smallness are ignored. The conditions for the function V 
to be positive definite are reduced to the inequalities 

A0 (h)> 0, 1 (gAo (5) - A*& @)I > O (3.1) 

When these conditions are satisfied, the function V is the first integral), with its sign 
fixed with respect to tit, yr, ei, Vi (i = 1, 2, 3) , of the equations of perturbed motion. Hence, 
by the Lyapunov stability theorerr we conclude that the inequalities (3.1) are the sufficient 
conditions of stability of solution (1.2) with respect to the variables @jr yi. el, V1 (I = 1,2,3). 

Thus, the sufficient conditions for stability of the unperturbed motion (1.2) are such 
that for a certain real value of the parameter i., both inequalities (3.1) are satisfied 
simultaneously. 

In analysing the roots of Eq.(2.2) and the inequalities (3.1), let us agree to assume 
that o>O(a(O) if for the solution (1.2) point C is above (below) point 0. 

Conditions (3.1) were obtained in /l/ and were discussed for the following cases: 1) 1= 

0; 2) I > 0, a < 0; 3) I > 0, a = 0. 

4. Conditions (3.1) cannct be satisfied for l<O because then the inequality 
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1 IHa (V - ?.VAr (h)l< 0 would be valid if & (A)> 0. Therefore, we shall assume below that 
1; 0. 

To analyse conditions (3.1) we shall introduce the function 

The graph of this function is shown in Fig.lforthe case where 

J&P - 4Jl*mgn > 0 (4.21 
The letters ?.,, h, and 1.1"; AS' denote the roots of the equations Aa@) = 0 and A,(h) = 0 
respectively, and 2,and I* (I,< I*) are the experimental values of the function (4.1). 

To satisfy the first condition (3.11 it is necessary for inequality (4.21 to be satisfied 
and then &,(l,)> 0, if ?.,<k<?.,.The second equation is equivalent to the condition 
if i. < Alo (A # 0) or h > &"! and to 0 c 1 < I (i.), if 

l> 1 (A), 
1, < A c I.,. Therefore conditions (3.1) 

are equivalent to the conditions 

AC (h) > 0, 1 > 1 (i.). if h < hr" (i. ;f 0) or 1.> X," (4.3) . 
L 

/I\ Ii & (i.)> 0, 0 < 1 < 1 (i.1, if & < X < & 

/;:II? ,\ Conditions (4.3) cannot be satisfied for any of the 

vfu~;~~(~+O), “;b’ because Q@)<O for 

To enalyse conditions (4 4) we take an arbitrary value 
*, and denote by &(I), 1*(i) the roots of 

0 %, 3 Al(l) hz(' A* k; k the equation l(A) = 1 which satisfy the inequalities 
h,<k, (1)<h2(l)<?~ (Fig.1). Then conditions (4.41 will 
be satisfied for all values of L which satisfy conditions 

Fig.1 A, (I) < i. < A* (I). Further, we see from Fig.1 that the 
equation I@.)= 1 has four real roots if I> I* or O( I( 

I,, and two real and a pair of complex roots if 2, <I< I*. WhenI= t,and 1 = l*,thisequationhas 
equalrealroots and apalrofcomplex roots.Since, for Zp 0 the equation l(k) = 1 is identical 
to Eq. (2.21, it follows that the necessary stability conditions are satisfied for l> 1* and 
two 0< 1<2,. CornParing this result with the analysis of conditions (4.3) and (4.4) discussed 
we finally conclude that: 1) for I> P the necessary stability conditions are satisfied, but 
not the sufficient conditions (4.3) : 2) for 0< I( I, both the necessary and sufficient 
conditions are satisfied simultaneously. 

It is asserted in Il/ that for t>O and a> 0 conditions (3.1) are reduced to the 
requirement that all four roots of the equation I(k) = 1 should be real with respect to i.. 
and in /2/ it is additionally mentioned that for (1.2) the necessary stability conditions are 
identical with the sufficient conditions, and reduce to the requirement that all roots of 
Eq.(2.21 should be real. AS the analysis above shows, these assertions only hold for 0< I< 
I,. and do not apply to the 

5. Let us substitute 

For all four roots of Eq.CS.1) to be real and different it is necessary and sufificent 

case when I> I*. 

i. = J3J1‘iw.~ into (2.2) , an5 represent these equations in the form 

LO’ 

L= 

2) - (L - p) 0.9 - 
I&? G=- p= 
l,mgo * 

l=O (5.1) 

i $ E.> 1 

to satisfy the following conditions for L>O 

531 = L'Oj_\,> v, _* .&,I = LV& > 0. As" = L??‘A;>O (5.2) 
1, (L. n.p) = 3R.L - F (L - fj) 

As (L. 0, p, = 3WL~ - I(L - ft)? - 8 (L - 8) - 

6 (p - 3)I I!L - 4 (L - fi)i(L - fi)? - 4Ll 
3: (L. !!, F) = 4 (9 - 4)IQ L - (L - i)?12 - 

4~ (L - l)lXO' - (3Lz - IOL I 3)Q - 16(L $ 1)a) + 

f’iLQ?T 4 (3LZ - 26L - 3)Q - 32(3L'- 2L ;- 3)1- 
4&3 (L - i)(Q - 16) - I&’ 

(see /3/, p.60). 
If L<O, the signs of all the inequalities in (5.21 should be changed. 
If 69 = 0, Eq.(5.1) has muitiple roots. For L>O, it has two real and a pair of 

complex roots if A,* (0, and has no real roots if A?> 0 and neither of the first two 
inequalities in (5.2) is satisfied. For L<O, Eq. (5.1) has two real and a pair of complex 
roots if A:'> 0, and has no real roots if W< 0 and, in addition, at least one of the 
inequalities Aa1> 0, AIs> is satisfied. 

The analysis of conditions (5.2) reduces to constructing in the (L. R)-plane the curves 



defined by the equation As = 0, Aa = 0, A, = 0 for a fixed values of the parameter 6 = 1 + e> 
1. This does not present any difficulty for the first two of these equations. 

Constructing the curves determined by the equation AT = 0 is more complex. For e=O, 
this equation takes the form 

A,(,&. n,O) = 4 (SI - 4)[RL - (.L + l)*]* = 0 

and breaks up into two equations, 
in Fig.2 (the dashed lines!. 

Fig.2 

R = 4 and Q = (L + l)*t-' which define the curves shown 

Let us introduce new variables, 1~' = Q - 4 and Z= 
L - 1, andwrite the equation A; = 0 as 

A,=Q&+QIw*+~~(L'+ (5.3) 

aa = 0 

a0 = 4 (2 -i I)?, 
a1 = -(W -j- 202E - &Z)(Z + I) 

a2 = 4[i(z- c)~- 18~ x 

(22. -!- E)(Z i I)], 
a, = 16~ I(z - E)~ - 

27s (z + I)1 

We denote by D(z, E) the discriminant of this equation 

FQ (2, E) D (z, E) = - 4p3 - 2iq2 = - 
16 (I+ I)* 

3aozp = 3&a, - ar2, 27aoSq = 27aola, - 9a0ala, i 2alS 

(5.4) 

where ~(z.E) is the polynomial in each of the variables z and E,which, with respect to 2, is 
of degree 11, and with respect to E of degree 9, in which case 

0 (z, 0) = 51229 (2 -r 2)2, 0 (-1, E) = (e + 1)6(E - 8)3 

0 (e. E) = -2'3'~~ (E T 1)3(E + 2)* 

Henceitfollows thatforeach E the functionQ, andtherefore,byEq.(5.4) thediscriminantD, has 
asleastonerealroot z,=Z,(C; if O<E<~, and at least three real roots z~(E)<O<Z~(E)( z1 (E). 

if E> S; at the same time for 0 <E <S we have D>O if z>zl, D (0 if z( z,, and for 
E>S we obtain D>U if z>zl or z,<r<z,, and D<O if z,<z<a, or z<.z,. For 
this reason Eq.(5.3) for O<E<~ has three real roots if z> zl. and one real root if z < zl. 
For e> 8. Eq.(5.3) has three real roots if z> rl. or za<z<z,. and one real root if z,< 
2 < z1 or z < z3. 

Let us denote by L = L(O, 6) a real algebraic function determined by the equation 
A7 = 0. The following expansions hold for the branches of this function: 

for small values of IO - 4 I 
L=a?j(G -4)-l- a:,i'- a:‘(??- 4)+a~'(C!-4)2-_.. 
(i = 1, 2) 

all,’ = - 4 (fi - I), a!'=0 &'=36+1, 

a:“= p + 3[(fl - 1)' 1 -; (S l I)' a] 

cy'=2, a:"=tap)(~-1)"~[1+(~-1)'.~((B-l1)"a]x 

[i _c (fi -- l)'a ;@-I)"*] 

a"' - _ - - &[486@ - 1)2 + 12(6 - l)(fiz- 9p + 9)+6s](S-l)-2 

for small values cf (0 - 461 

L = al’31 (R - 48) $ a?(3) (R - 4S)z + a9@) (Q - 46)' A . 

al (3) -- - B a?’ B-2 a3 (3) 8g3 
- sg'+ 38 - 1 

4(8 - 1) ' -=ia(B- = 6@ (8 - IP 

for high values of Q> 0 

L= ,Ci)q A (i)o':, ($1 I 
2 - a, -. -La, T a_1__ (i)&/. + a%,'n-l + a$Q"~ + . . 

(i = 4, 5) 
(41 a, =a2 = (5) 1 (4) , a, =-al - (5)- - 2 J'2(6- 1) 

ar!=a;b'I _ -&7 - 38) 

for high values of 1 S-21 and 6> 9 

L_ av)Q-l+ ap_)Q-z I a?'Q-3 L 
1- 3 . . . (i= 6,7) 

a~i"= $ [2i- 188 - 6: i (6 - I)"#(6 - 9)"*]< 0 
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(I!;‘)= + [- (fY + o* + 638 - 81) & 

$4 - 12fv + 9728 + 2187) (fi - l)‘!* (fi - 9)-‘/t] 

(we will not give the remaining coefficients because the expressions become cumbersome). 
Theresults of our analysis of the sufficient and necessary conditions for stability of 

the motion (1.2) are shown in Figs.3 and 4. The first (third quadrant of the (L,Q)-plane 

Fig.3 Fig.4 

corresponds to motion (1.2) for which the point 0 is located below point 0' and point C above 
(below) point 0; the second (fourth! quadrant corresponds to the motion for which point 0 
is above 0', and point C below (above) 0. The regions with the boundaries marked by crosses 
correspond to the motions for which the sufficient and necessary stability conditions are 
simultaneously satisfied; the regions marked with the inclined dashes correspond to the motions 
for which only the necessary stability conditions are satisfied. Fig.2 corresponds to I< 

B < 9, and Fig.3 to 9 < fi < &. and at the same time the line marking the stability region 
which is in the fourth quadrant shifts in the direction opposite to the S2 axis as p-p,, 
and for fi = fl, it becomes tangential to the branch of the curve L = L(R. fi,) lying in the first 
and fourth quadrants. Fig.4 corresponds to values of p> fi*. Parts of the (L,R)-plane not 
marked with dashes refer tc the parameters for which the motion (1.2) is unstable, and Eq. 
(2.2) has at least one pair of complex roots. 
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